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RESUMEN 
La neurogénesis hipocampal adulta constituye un proceso de plasticidad neural único en el sistema nervioso central. 
No obstante, su ocurrencia en seres humanos ha sido objeto de reciente debate. El presente artículo aborda una 
revisión bibliográfica del proceso de neurogénesis hipocampal adulta en condiciones fisiológicas y patológicas 
incluyendo los estudios desarrollados por nuestro grupo que, junto con otros, han contribuido a evidenciar dicho 
proceso en la especie humana. Además, se analizan los requisitos metodológicos requeridos para la identificación 
inequívoca de marcadores de neurogénesis mediante la técnica de inmunohistoquímica. Nuestros resultados 
demuestran la presencia de células madre neurales, células proliferativas, neuroblastos y neuronas inmaduras en 
diferentes etapas de diferenciación en nicho neurogénico del giro dentado hipocampal humano. Asimismo, el 
envejecimiento y diversas enfermedades neurodegenerativas como enfermedad de Alzheimer, esclerosis lateral 
amiotrófica, enfermedad de Huntington, α-sinucleinopatías (demencia con cuerpos de Lewy, enfermedad de 
Parkinson) y demencia frontotemporal, alteran la densidad y morfología de poblaciones neurogénicas y perturban la 
homeostasis del nicho. Estas alteraciones podrían contribuir a las manifestaciones clínicas observadas en dichos 
pacientes. En conjunto, estos hallazgos subrayan la relevancia crítica de la metodología empleada en el estudio de la 
neurogénesis adulta y demuestran su ocurrencia y naturaleza dinámica en el cerebro humano. 

PALABRAS CLAVE: Neurogénesis hipocampal adulta; Inmunohistoquímica; Metodología; Humanos; Neuronas 
inmaduras; Enfermedades neurodegenerativas. 

ABSTRACT 
Adult hippocampal neurogenesis represents a unique form of neural plasticity within the central nervous system. 
However, its occurrence in humans has been the subject of debate. This paper presents a comprehensive review of the 
adult hippocampal neurogenesis process under both physiological and pathological conditions, including studies 
conducted by our group, alongside others, that have contributed to demonstrating the existence of this process in 
human. We analyze the methodological requirements necessary for the unequivocal identification of neurogenesis 
markers using immunohistochemistry in human postmortem tissue, emphasizing the importance of controlled 
fixation times and appropriate histological pretreatments. Our findings reveal the presence of neural stem cells, 
proliferative cells, neuroblasts, and immature neurons at various stages of differentiation within the neurogenic niche 
of the human dentate gyrus. Furthermore, aging and several neurodegenerative diseases—such as Alzheimer’s 
disease, amyotrophic lateral sclerosis, Huntington’s disease, α-synucleinopathies (including dementia with Lewy 
bodies and Parkinson’s disease), and frontotemporal dementia—alter the density and morphology of neurogenic 
populations and disrupt niche homeostasis. These alterations may contribute to the clinical manifestations observed 
in aforementioned patients. Collectively, these findings underscore the critical importance of the methodology applied 
in the study of adult neurogenesis and support its occurrence and dynamic nature in the human brain. 

KEYWORDS: Adult hippocampal neurogenesis; Immunohistochemistry; Methodology; Humans; Immature 
neurons; Neurodegenerative diseases. 
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1. NEUROGÉNESIS ADULTA 

El aprendizaje y la memoria son funciones que capacitan al organismo para su desarrollo y 
adaptación al entorno. Estas funciones están coordinadas por varias regiones cerebrales, 
entre ellas, el hipocampo. El hipocampo es una estructura bilateral del lóbulo temporal que 
forma parte del sistema límbico, y que alberga, además, uno de los procesos que confieren 
una mayor plasticidad neural en la etapa postnatal, la neurogénesis hipocampal adulta. 
Dicho proceso contempla múltiples etapas que convergen en la integración de nuevas 
neuronas granulares funcionales en el circuito trisináptico pre-existente. El proceso de 
neurogénesis adulta ha sido descrito en, al menos, dos nichos neurogénicos restringidos del 
cerebro adulto. El primero, ya mencionado, es la zona subgranular del giro dentado del 
hipocampo, y el segundo, la zona ventricular-subventricular de los ventrículos laterales que 
genera precursores neuronales 1 capaces de migrar al bulbo olfatorio y diferenciarse 
principalmente en interneuronas olfatorias 2,3 que se integran en circuitos relacionados con 
la olfacción 4,5 y reconocimiento social 6. 

1.1. Citoarquitectura hipocampal 

La formación hipocampal incluye el giro dentado y las regiones CA1 – CA4 del Cornu 
Ammonis 7,8. El hipocampo contiene dos circuitos principales: el monosináptico, que conecta 
directamente la corteza entorrinal con CA1, y el trisináptico, donde la información fluye 
desde la corteza entorrinal al giro dentado, después a CA3 (o CA2) y finalmente a CA1. Desde 
CA1, las proyecciones alcanzan el subículo y regresan a la corteza entorrinal, completando 
un bucle crucial para el procesamiento de la memoria 9,10. 

1.1.1. Giro dentado y nicho neurogénico 

El giro dentado muestra una anatomía en forma de punta de flecha o “V”, y se divide en dos 
segmentos unidos por la cresta o ápex: la hoja suprapiramidal (que, en un corte coronal, 
deja por debajo la región de CA3/CA4) y la porción opuesta a ésta, la hoja infrapiramidal 
(que deja por encima la capa de células piramidales anteriormente mencionada). El giro 
dentado presenta una estructura trilaminar, distinguiéndose la capa molecular, la capa 
granular y el hilus. 

La capa molecular es la región más externa, y en ella se extiende el árbol dendrítico de las 
neuronas granulares, así como multitud de fibras, entre ellas, la vía perforante. Sólo un 
escaso número de interneuronas residen en esta zona: las células MOPP (Molecular layer 
perforant path-associated), que expresan VIP (Vasoactive intestinal peptide); las células axo-
axónicas, en la región cercana a la capa granular, que expresan PV (Parvalbumin); y las 
células semilunares 11,12.  

Las células principales del giro dentado, o neuronas granulares, disponen su cuerpo celular 
de forma sumamente compacta, originando la capa granular. La parte basal, denominada 
zona subgranular, corresponde a la matriz germinativa o nicho neurogénico hipocampal, y 
reúne una serie de condiciones permisivas requeridas para la preservación de las células 
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madre neurales, así como para permitir el desarrollo e incorporación de nuevas neuronas 
en el giro dentado. Debido a su significativa implicación en la regulación del proceso de 
neurogénesis adulta, el nicho neurogénico hipocampal será abordado en el apartado 5. A lo 
largo del proceso de neurogénesis hipocampal adulta, las nuevas neuronas expresan 
diversos marcadores como reflejo de su estadio madurativo 13, extienden su árbol 
dendrítico en la capa molecular, y proyectan sus axones a las áreas CA3 y CA2 14, al tiempo 
que migran moderadamente a lo largo de la capa granular, hasta adquirir una morfología, 
posición, y propiedades electrofisiológicas similares a las de las neuronas granulares 
maduras generadas durante desarrollo embrionario y etapa perinatal 15,16. Este proceso 
madurativo será detallado en el apartado 4. A su vez, en la zona subgranular se encuentran 
interneuronas tipo cesta (basket cells), gran parte de las cuelas expresan PV 17,18.  

El hilus, o capa polimórfica, alberga dos subpoblaciones de interneuronas GABA (γ-
Aminobutyric acid)–érgicas: HIPP (Hilar perforant path-associated), que sintetizan Somatostatin 
y Neuropeptide Y; e interneuronas HICAP (Hilar commissural-associational pathway-related), 
que sintetizan Cholecystokinin 11,19. Las denominadas células musgosas del hilus 19 representan 
la población principal de neuronas excitatorias que residen en esta capa 12,20. 

2. NEUROGÉNESIS ADULTA: UN RECORRIDO DESDE LOS ENFOQUES CLÁSICOS A LAS 
METODOLOGÍAS ACTUALES 

Santiago Ramón y Cajal escribió: «En los cerebros adultos las vías nerviosas son algo fijo, 
terminado, inmutable. Todo puede morir, nada puede regenerarse […]», lo cual contribuyó 
a sostener el dogma de la invariabilidad estructural del cerebro adulto. 

A pesar de la observación de células mitóticas en la pared del ventrículo lateral de roedores que 
cuestionaban el dogma prestablecido 22, el inicio del conocimiento de neurogénesis adulta se 
alcanzó gracias a la introducción de la técnica de autoradiografía con timidina tritiada 23,24. Esta 
técnica permitió la visualización de células que habían incorporado dicha molécula en su ADN 
(Ácido desoxirribonucleico) durante la fase de división 25. Así, Joseph Altman describió 
detalladamente la presencia de células generadas durante la vida adulta en el neocortex, el giro 
dentado del hipocampo, el bulbo olfatorio y la corteza del cerebelo 26,27. En años sucesivos, la 
ocurrencia de neurogénesis y la presencia de sinapsis en estas células fue demostrada mediante 
microscopía electrónica en roedores 28 y en otras especies como el macaco adulto 29. 
Posteriormente, Fernando Nottebohn demostró en aves la presencia de células generadas en 
zona ventricular-subventricular que migraban hasta el núcleo de control vocal HVc 
(Hiperestriado-ventral, pars caudalis), diferenciándose a neuronas y células de glía 30–32. No 
obstante, la controversia presente en el campo 33,34, no fue paliada hasta los años noventa, 
cuando se comenzó a emplear análogos sintéticos de timidina, entre ellos, la BrdU (5 Bromo-2´-
deoxyuridine), que fueron combinados con inmunotinciones 35–37 de varios marcadores 
característicos de las distintas subpoblaciones celulares. Estos avances contribuyeron a 
demostrar la ocurrencia del proceso de neurogénesis adulta en roedores tanto in vitro 38 como 
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in vivo 39,40 y en primates no humanos 41,42. La posterior introducción de herramientas virales 
como retrovirus, que integran su material genético exclusivamente en células en división 43, se 
convirtió en una de las herramientas más empleadas para el estudio de la neurogénesis adulta. 
Dicho abordaje experimental permitió ampliar la comprensión del proceso madurativo de las 
nuevas neuronas hasta su completa integración en el circuito hipocampal, así como la 
contribución de las moléculas implicadas en el proceso 44–46. Otras herramientas basadas en el 
trazado monosináptico retrógrado de conexiones con el virus pseudotipado de la rabia, han 
permitido identificar a las células que inervan, en primer orden, neuronas granulares 47,48.  

En 1998, el estudio de Peter S. Eriksson y colaboradores, demostró la incorporación de BrdU 
en una población discreta de células proliferativas del giro dentado humano mediante la 
administración periférica de este análogo 49. Adicionalmente, dichas células mostraron 
expresión del marcador neuronal NeuN (Neuronal-nuclei), apoyando así la ocurrencia del 
proceso de neurogénesis adulta en nuestra especie. Del mismo modo, se demostró la 
incorporación de otros análogos de timidina similares, como IdU (5-Iodo-2’-deoxyuridine) 50, 
o del 14C emitido a la atmosfera entre 1955-1963 durante los ensayos de bombas nucleares 
de la Guerra Fría 51 en estas células durante la fase de proliferación. Este último estudio 
determinó la tasa de incorporación (~700 neuronas diarias) y de remplazo neuronal del giro 
dentado humano mediante datación retrospectiva del nacimiento de estas células 51. Otros 
grupos focalizaron su investigación en la identificación de marcadores de células madre y 
progenitores in vivo. En este sentido, Louis Manganas y colaboradores describieron una señal 
específica de células madre y progenitores en roedores y seres humanos por espectroscopía 
magnética funcional 52. Los metabolitos posiblemente responsables de dicha señal fueron 
descritos en posteriores trabajos del grupo 53. De forma complementaria, la detección de 
Glypican-2 en líquido cefalorraquídeo o Stem cell factor y Granulocyte-colony stimulating 
factor en sangre, se han propuesto como biomarcadores para la detección del proceso de 
neurogénesis adulta humana in vivo 54–56. Con todo, la ocurrencia del proceso de neurogénesis 
hipocampal adulta en la especie humana ha sido recientemente debatida de nuevo. En 2016, 
se reportó un declive acusado en el proceso de neurogénesis de ambos nichos neurogénicos 
humanos empleando los marcadores Ki-67 y DCX (Doublecortin) mediante 
inmunohistoquímica 57. Seguidamente, Shawn Sorrells y colaboradores, reportaron que la 
densidad de células proliferativas (Ki-67, Sox1 (Sex determining region Y-box transcription 
factor-1) y Sox2) y de neuronas inmaduras (DCX y PSA-NCAM) disminuían hasta tasas 
indetectables en seres humanos adultos 58. En el extremo opuesto, estudios coetáneos que 
emplearon inmunohistoquímica combinada con métodos de determinación celular 
estereológica, demostraron la persistencia del proceso de neurogénesis adulta, si bien 
señalaron una reducción en el número de células Nestin+ 59 a lo largo del envejecimiento. 
Consecutivamente, estudios de nuestro grupo, demostraron la presencia de células de tipo 
RGL (del inglés Radial glia-like) o células de tipo glía radial, células proliferativas 60 y neuronas 
inmaduras (DCX+) en diverso grado de diferenciación 61,62 en el giro dentado de seres 
humanos hasta la novena década de edad. Para ello, empleamos una batería de marcadores 
característicos de cada tipo celular comprendido en el proceso de neurogénesis adulta, así 
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como un sofisticado método de preservación del tejido humano post mortem. No obstante, la 
densidad de neuronas inmaduras sufrió un declive asociado al envejecimiento fisiológico 62.  

Los estudios anteriormente mencionados comparten el uso de técnicas de 
inmunohistoquímica para la detección de la expresión de proteínas y la clasificación 
fenotípica de los distintos tipos celulares del proceso de neurogénesis adulta. De forma 
significativa, el reconocimiento y unión de los anticuerpos a sus antígenos específicos es 
sensible al método de procesamiento de la muestra, tipo y tiempo de fijación e intervalo post 
mortem, entre otros factores 61–63. Adicionalmente, técnicas como la detección de proteínas 
de interés por Western-blot 64,65, la cuantificación de expresión de ARNm (Ácido ribonucleico 
mensajero) por qPCR (quantitative polymerase chain reaction) 66, y una mejora de la técnica 
qFISH (quantitative fluorescence in situ hybridization) con mayor resolución de detección de 
ARNm, a nivel de célula única, denominada RNAscope 67, han reforzado los estudios previos 
que apoyan la ocurrencia de neurogénesis hipocampal adulta en seres humanos. 
Recientemente, se ha implementado, además, el análisis de expresión génica a nivel de 
célula individual (single cell/nucleus RNA sequencing) para la reconstrucción de trayectorias 
en células humanas. Esta técnica, con alguna excepción 68, ha permitido la detección del 
clúster de células de tipo RGL en el giro dentado humano adulto, reconstruyendo la 
trayectoria celular completa del proceso de neurogénesis adulta 69–72. Adicionalmente, este 
tipo de análisis ha subrayado la heterogeneidad de las neuronas granulares inmaduras 73. 

2.1. Neurogénesis adulta a lo largo de la escala filogenética 

El proceso de neurogénesis adulta ha sido evaluado a lo largo de la escala filogenética. Así, 
este evento se ha descrito en vertebrados como peces 74,75, anfibios 76,77, reptiles 78,79 o aves 30. 
No obstante, este evento ha sido investigado en mayor medida en mamíferos, observándose 
células involucradas en las etapas del proceso de neurogénesis adulta, en más de 120 
especies. Algunos ejemplos encuadrados por órdenes son, dentro de marsupiales: 
dasiuromorfos 80, dentro de mamíferos placentarios: roedores (ratón, rata, ardilla…) 26,39,81, 
lagomorfos (conejo) 82, carnívoros (perro, león, foca…) 80,83, artiodáctilos (cabra, búfalo, 
camello…) 80,84, quirópteros (murciélagos) 85, proboscídeos (elefante) 86, primates (macaco, 
tití…) 41,42,87,88 o sirénidos (manatí) 89, (revisado en 90). 

3. CONTRIBUCIONES DE LA NEUROGÉNESIS HIPOCAMPAL A LA FUNCIÓN DEL 
CEREBRO ADULTO 

El crecimiento volumétrico del giro dentado se prolonga en el periodo postnatal hasta los 
14- 20 días en ratones, ~3 meses en primates y ~2 años en humanos 91–94. La posterior 
generación e integración de nuevas neuronas al circuito hipocampal durante la etapa 
adulta supone un evento de plasticidad sináptica y estructural único en el sistema 
nervioso central. La conservación evolutiva de este singular proceso en mamíferos 95, 
incluyendo en seres humanos 49, podría sugerir el desempeño de funciones primordiales 
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que las neuronas granulares generadas en la etapa perinatal no son enteramente capaces 
de desarrollar por sí mismas.  

El hipocampo es una zona cerebral determinante para las funciones de aprendizaje y 
memoria episódica y espacial 96,97, que, junto con otras áreas como el hipotálamo o la 
amígdala, forma parte del sistema límbico 98,99. En este sentido, estudios en roedores han 
sido relacionadas las nuevas neuronas que se desarrollan en dicha región, con la memoria 
y navegación espacial, conductas exploratorias, tareas de reconocimiento de objetos, 
condicionamiento al miedo 100–103 o conductas sociales (reconocimiento social o evitación 
social inducida por el estrés 62,104,105). De hecho, se ha demostrado el papel de dichas células 
no solo en la formación de nuevas memorias 103, sino también en la consolidación de éstas 
106–108 a través de la optimización de los sistemas de consolidación 109. No obstante, se ha 
reportado que niveles altos de neurogénesis adulta pueden dificultar la generación de 
nuevas memorias dependientes de hipocampo a través de la recomposición del circuito giro 
dentado-CA3. Las neuronas inmaduras establecen nuevas conexiones sinápticas en el 
circuito que pueden coexistir con conexiones más antiguas, o incluso sustituirlas, 
impidiendo así el mantenimiento de dicha memoria 110. De esta forma, se ha establecido una 
relación inversa entre los niveles de neurogénesis adulta y la persistencia de la memoria 110. 
Paralelamente, el nivel de neurogénesis hipocampal adulta se ha relacionado con las 
capacidades y flexibilidad cognitiva 111, e incluso recientemente con la individualidad 
comportamental 112. En referencia a la flexibilidad cognitiva, la neurogénesis adulta permite 
la integración de nueva información en contextos previamente aprendidos 111. 

El giro dentado participa en la tarea de separación de patrones (pattern separation), que 
consiste en la discriminación efectiva de eventos o ambientes muy similares con 
anterioridad a su almacenaje, con el objetivo de reducir la probabilidad de interferencia en 
el recuerdo de la memoria 113. Subsecuentemente, se confirmó la implicación de las nuevas 
neuronas 114,115 y, más recientemente, de las células musgosas 116, en este cometido. Así, 
ratones con mayores tasas de neurogénesis son más eficientes en la discriminación de 
contextos muy similares 117. Por otro lado, la tarea de compleción de patrones (pattern 
completion) refleja la capacidad para recuperar la información almacenada completa 
cuando el contexto proporciona información parcial. En esta tarea participan las neuronas 
granulares maduras y algunas neuronas piramidales de CA3 118,119. Por consiguiente, ambos 
procesos de separación y compleción de patrones son complementarios y decisivos para el 
almacenamiento y recuerdo exitoso de la memoria.  

A su vez, a pesar de que la ablación de neurogénesis no afecta a los niveles basales de 
ansiedad 120, una menor tasa de neurogénesis adulta se ha correlacionado con un 
incremento en los comportamientos de tipo ansioso 121. De tal forma que este proceso se ha 
propuesto como un regulador del estado de ánimo que confiriere resiliencia a la ansiedad 
inducida bajo condiciones de estrés 122–124 a través de la regulación de las conexiones 
excitatorias desde el giro dentado a CA3 125.  
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Finalmente, algunos estudios han sugerido una posible distinción espacial de las funciones 
del giro dentado, encontrando tareas relacionadas con la regulación emocional asociadas la 
porción ventral de esta estructura, mientras que la porción dorsal ha sido asociada 
clásicamente con funciones cognitivas como aprendizaje y memoria 126–128. Estas 
variaciones funcionales podrían ser el reflejo del patrón de conectividad diferencial a lo 
largo del eje dorso-ventral del hipocampo 129. 

4. DINÁMICA DEL PROCESO DE NEUROGÉNESIS HIPOCAMPAL ADULTA 

El giro dentado se origina a partir de precursores del neuroepitelio embrionario primario, 
ubicados en la pared medial del ventrículo lateral. Estas células migran a través de la 
corriente migratoria dentada a la fisura hipocampal. Una vez allí, forman la matriz 
proliferativa secundaria que da lugar a neuronas granulares y, finalmente, durante los 
últimos estadios embrionarios, a la matriz terciaria, que genera la zona subgranular e hilus 
en el adulto 130,131. A pesar de que podrían existir varios tipos celulares como origen 
embrionario de células de tipo RGL en el cerebro adulto 132, los principales precursores de 
las células madre neurales presentes en la zona subgranular se originan a partir de 
precursores Hopx+ (Homeodomain-only protein) del neuroepitelio. Estas células generan 
nuevos precursores neurales Hopx+ con capacidad migratoria durante las etapas 
embrionarias (E11.5) a lo largo de la corriente migratoria dentada. Tras alcanzar el giro 
dentado primitivo, los progenitores adoptan propiedades de tipo RGL quiescentes Hopx+ 
durante estadios postnatales tempranos 133. Hopx es un marcador de células de tipo RGL 
adultas en el giro dentado 134 que distingue con eficacia dichas células de los progenitores 
neurales de la zona subventricular 135. Adicionalmente, durante la etapa de gestación tardía, 
una subpoblación de células del hipocampo ventral que responden a señales Shh (Sonic 
hedgehog) expande la población de células de tipo RGL hipocampales 136. 

4.1. Células de tipo glía radial, células de tipo RGL 

Si bien existe heterogeneidad en la población de células madre neurales del giro dentado en 
el cerebro adulto 132, la subpoblación mayoritaria exhibe un soma con forma triangular 
localizado en la zona subgranular y varios procesos cortos de forma radial, junto con un 
proceso apical largo que se extiende perpendicularmente a través de la capa granular y se 
ramifica en la capa molecular 137–139. Por medio de dichos procesos, estas células interaccionan 
con vasos sanguíneos, neuronas y células gliales 140. Esta población celular ha sido 
denominada de diversos modos: astrocito radial 139, célula madre neural o célula tipo 1 138, 
célula de tipo RGL 141 e incluso, célula RGL tipo α 142. El presente articulo emplea el sistema de 
clasificación de subpoblaciones celulares implicadas en el proceso de neurogénesis 
hipocampal adulta descrito por Gerd Kempermann 13 y, en consecuencia, denomina a esta 
subpoblación “células de tipo RGL”. Las células de tipo RGL expresan el marcador de 
filamentos intermedios presente en células madre neurales Nestin 143, además del marcador 
de precursores proliferativos Sox2 144,145, y las proteínas GFAP 139,146 y BLBP (Brain lipid-
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binding protein) 147, pero no expresan el marcador S100β (S100 Calcium-binding protein β), 
característico de astrocitos maduros137,138. Las células de tipo RGL del hipocampo poseen el 
potencial para generar neuronas, astrocitos y oligodendrocitos in vitro 148. No obstante, in 
vivo, dichas células generan mayoritariamente neuronas, y, de forma más reducida, astrocitos 
145,149. De hecho, recientemente se ha sugerido que la mayor parte de la astrogliogénesis del 
giro dentado adulto se produce a través de la proliferación de astrocitos locales150. En 
condiciones fisiológicas, no se generan nuevos oligodendrocitos in vivo 137,141,151 debido a la 
actuación reguladora de la proteína Drosha 152. Las células de tipo RGL poseen propiedades 
electrofisiológicas de membrana pasiva y corrientes de potasio 146, así como uniones estrechas 
de tipo gap 153 y reciben múltiples señales del ambiente. Las células de tipo RGL raramente 
proliferan 138,154, pero, cuando se activan, pueden efectuar un patrón de división simétrica 
(dando lugar a dos células de tipo RGL, con la consiguiente renovación del conjunto de células 
madre) o asimétrica (originando una célula de tipo RGL y, o bien una célula que empezará a 
proliferar generando una célula tipo 2 137,139,141, o un astrocito 137. Tras la división, las células 
de tipo RGL pueden retornar al estado de quiescencia 141 a través de la degradación del factor 
pro-activador Ascl1/Mash1 155, conformando una subpoblación de células de tipo RGL que 
difiere de aquellas que no han proliferado precedentemente 156. 

4.2. Progenitores intermedios 

Los progenitores intermedios o células de tipo 2 permanecen en la zona subgranular, 
exhiben una morfología ovalada con procesos cortos y proliferan rápidamente originando 
agrupaciones alrededor de vasos sanguíneos 157. En este estadio podemos observar la 
expresión de proteínas relacionadas con el ciclo celular como PH3 (Phospho-histone 3), 
PCNA (Proliferating cell nuclear antigen), Ki-67 o MCM2 (Minichromosome Maintenance 
Complex Component-2) 158–160. Dentro de la subpoblación de progenitores intermedios, se 
incluyen las células de tipo 2a, que mantienen su expresión de Nestin y Sox2, empiezan a 
expresar Pax6 (Paired box protein-6) y, de forma tardía, Ngn2 (Neurogenin-2) 161, y las 
células de tipo 2b, que inician la expresión del factor de transcripción NeuroD1 
(Neurogenic differentiation-1) y de proteínas del linaje neuronal como Tbr2 (T-box brain 
protein-2), y DCX 13,138,146,147. Cabe mencionar que Tbr2 suprime a Sox2, y por ello su 
actuación es crítica en el periodo de transición de progenitores intermedios 162. La 
sobreproducción de progenitores intermedios se regula a través de procesos de apoptosis 
y fagocitosis microglial 163. En la etapa final de este periodo, las células tipo 2b comienzan 
a expresar Prox1 (Prospero homeobox-1), marcador de identidad de neurona granular 164 
y PSA-NCAM 13. Entre los marcadores mencionados, la proteína asociada a microtúbulos, 
DCX y la glicoproteína PSA-NCAM, se establecen como los dos principales marcadores de 
neuronas inmaduras 165,166. 

4.3. Maduración post-mitótica temprana 

Seguidamente, los progenitores intermedios dan lugar a neuroblastos o células tipo 3, 
comprometidas con el linaje neuronal, que inicialmente exhiben una morfología 
polarizada, con neuritas bipolares que empiezan a extenderse paralelamente a la capa 
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granular, y expresan marcadores neuronales inmaduros como DCX, PSA-NCAM, Calretinin 
y NeuN 13. Durante esta fase de desarrollo, las nuevas neuronas migran desde zona 
subgranular hacia la capa granular, estabilizándose en su posición final 167. Las neuronas 
jóvenes muestran una resistencia de input muy alta debido a la baja densidad de canales 
de K+ en la membrana plasmática 168,169. Un número elevado de neuronas inmaduras 
sufrirá procesos de apoptosis o muerte programada 170. Las nuevas neuronas granulares 
que sobreviven modifican su morfología a una forma neuronal polarizada con un proceso 
dendrítico vertical que se ramifica en la capa molecular y un axón que alcanza el hilus a 
los 7 días, y las zonas hipocampales CA2 14 y CA3 46,171 a los 10-11 días tras la mitosis. Las 
nuevas neuronas incrementan la densidad de los canales de Na+ y K+ dependientes de 
voltaje 168, e intercambian la expresión de Calretinin por Calbindin, ambas proteínas de 
unión a calcio, en torno a las 2-3 semanas tras la mitosis, como reflejo de una identidad 
neuronal más madura 172,173. Paralelamente a la maduración morfológica, alrededor de la 
segunda semana post-mitosis, la acción despolarizante de GABA es necesaria para el 
establecimiento de la sinaptogénesis glutamatérgica, y, por tanto, para la adecuada 
maduración e integración sináptica de las nuevas neuronas granulares 174. Brevemente, la 
acción combinada de la despolarización dependiente de GABA y la activación del receptor 
NMDA (N-methyl-D aspartate) convierte la sinapsis inicial silenciosa (que contiene sólo 
NMDAR y carece de receptores AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 
acid) y, por lo tanto, no puede participar en la comunicación sináptica rápida) en sinapsis 
activas NMDA / AMPA a través de la incorporación del receptor AMPA a la membrana 175. 
Una vez establecidas las conexiones glutamatérgicas, las nuevas neuronas comienzan la 
fase de mayor plasticidad sináptica, debido a que su umbral para producir la LTP (del 
inglés Long-term potentiation) o potenciación sináptica a largo plazo, es más bajo que en 
las neuronas granulares maduras169. Curiosamente, GABA causa un efecto bimodal en las 
neuronas inmaduras, siendo despolarizante en las etapas iniciales 174, e hiperpolarizante 
en último término. Esta importante transición ocurre antes de la cuarta semana post-
mitosis y concuerda con el intercambio de expresión preferente de NKCC1 (Na+-K+-2Cl- 
cotransporter-1) a KCC2 (K+-Cl- cotransporter-2). El cotransportador KCC2, ocasiona una 
disminución de la concentración de Cl- intracelular y, por tanto, la acción de GABA produce 
inhibición neuronal por entrada de este ion 176. Igualmente, las neuronas inmaduras 
intercambian la expresión de la subunidad NR2B (NMDA Receptor2B), que muestra una 
alta afinidad por CaMKII (Ca2+/calmodulin-dependent protein kinase II) y es responsable 
del aumento de eventos LTP 177, por la subunidad NR1 (NMDA Receptor1) en el receptor 
NMDA 178,179. 

4.4. Maduración post-mitótica tardía 

Durante esta etapa, las nuevas neuronas continúan expresando algunos marcadores de 
etapas anteriores como Prox1, Calbindin y NeuN, entre otros 13, debido a que su expresión 
es persistente en neuronas granulares maduras 180–182. Las primeras espinas dendríticas 
contactan terminales sinápticos preexistentes, generando botones múltiples alrededor de 
la tercera semana post-mitosis. Después, tiene lugar un periodo de refinamiento sináptico, 
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con una reducción de estas estructuras múltiples 45 y la formación de espinas de tipo 
fungiforme 46. Adicionalmente, existe un control homeostático de la morfología dendrítica, 
que compensa, mediante mecanismos de poda, los cambios dendríticos dependientes de 
actividad 183. En cuanto al axón, los botones musgosos de CA3, requieren más de ocho 
semanas para alcanzar su tamaño final, como reflejo de la competencia sináptica 184. 
Asimismo, la plasticidad sináptica está aumentada en neuronas inmaduras entre las 4-6 
semanas 176. Finalmente, tras esta maduración morfológica y funcional dependiente de 
actividad 168,174,185, las nuevas neuronas granulares maduras exhiben propiedades 
funcionales equiparables a las de sus homólogas generadas durante la etapa embrionaria 
15,16,176, y se encuentran integradas en circuitos funcionales 186,187 

5. NICHO NEUROGÉNICO HIPOCAMPAL 

El nicho neurogénico es una estructura compleja que alberga las características necesarias 
para propiciar y regular el proceso de neurogénesis adulta mediante interacciones 
intrincadas entre sus componentes 188–190.  

La matriz extracelular es una profusa red tridimensional que proporciona un andamiaje 
funcional, regula la difusión/condensación de moléculas, mantiene los gradientes de 
señalización y la firmeza entre las células. Los componentes principales son glicoproteínas, 
proteoglicanos y moléculas de adhesión celular 191. El papel de la matriz extracelular en el 
proceso de neurogénesis adulta aún no se conoce en profundidad. Sin embargo, algunos 
estudios apuntan al papel de ciertos de sus componentes como reguladores de la 
homeostasis de las células madre y progenitores 192 o en la determinación del linaje 
neuronal y el desarrollo dendrítico de las nuevas neuronas granulares 193. Cabe destacar las 
redes perineuronales, que son estructuras de matriz extracelular ricas en 
glicosaminoglicanos que rodean la región perisomática de ciertas neuronas. Dichas 
estructuras desempeñan un papel relevante en la regulación de la plasticidad neuronal, 
neuroprotección y homeostasis 191. Estas estructuras se visualizan mediante el marcador 
WFA (Wisteria floribunda agglutinin) 194 y, en el hipocampo, su presencia está restringida a 
interneuronas PV+, teniendo una gran implicación en la regulación del circuito. De hecho, 
las nuevas neuronas granulares contactan preferencialmente interneuronas PV+ que están 
rodeadas por redes perineuronales 195.  

El nicho neurogénico alberga distintas poblaciones celulares que interactúan 
estrechamente entre sí y regulan el proceso de neurogénesis adulta y el circuito. Entre 
ellas, la población de astrocitos hipocampales maduros expresa GFAP, S100β 196 y 
EAAT1/GLAST, y exhibe divergencias tanto morfológicas como fisiológicas según la capa 
que ocupe 197,198. Dichas células gliales promueven la proliferación y especificación del 
destino neural de progenitores neurales 199. En estadios más avanzados del proceso de 
neurogénesis, los astrocitos regulan la arborización dendrítica y la formación de espinas 
en neuronas inmaduras 200, e incluso en la eliminación de las sinapsis 201. Asimismo, 



Anales de la Real Academia de Doctores de España. Volumen 10, número 3 – 2025, páginas 511-560 
Moreno-Jiménez, E.P. et al. – Proceso de neurogénesis hipocampal adulta en la especie humana… 

 
 
 
 

 

Proceso de neurogénesis hipocampal adulta en la especie humana… | 521 
 

liberan tanto factores pro-neurogénicos, como factores inhibidores del proceso de 
neurogénesis 202, y factores reguladores de sinapsis, debido a su significativo papel en la 
sinapsis tripartita 203,204.  

Las células de microglía 205 son los macrófagos residentes en el cerebro y expresan Iba1 
(Ionized calcium-binding adapter molecule-1). Estas células tienen su origen en 
precursores del saco vitelino que invaden el cerebro a mediados del proceso gestacional 
206. Su función principal es el mantenimiento de la homeostasis mediante la vigilancia, 
secreción de moléculas y fagocitosis de células apoptóticas y desechos. En ausencia de 
inflamación, la microglía ramificada participa en el soporte trófico y poda sináptica de las 
nuevas neuronas y en la eliminación de células que no logran integrarse en el circuito163 a 
través de eventos de muerte celular programada 207. De hecho, se localizan alrededor de 
progenitores neurales y en estrecho contacto con las neuronas granulares 163,208,209. Las 
células de la microglía pueden secretar factores pro-inflamatorios que afectan 
negativamente al proceso de neurogénesis adulta 210, y que, además, regulan la actividad 
astrocítica 211. Adicionalmente, la actuación de la microglía es requerida para mediar los 
efectos positivos de moléculas secretadas por otras células sobre la neurogénesis 212–214. 
De forma opuesta, la ausencia de microglía 215 o la secreción de moléculas como IL 
(Interleukin)-6 216, IL-1β 217 y la citoquina TNF (Tumor necrosis factor) 218 afectan 
desfavorablemente al proceso de neurogénesis.  

Finalmente, el nicho neurogénico hipocampal está altamente vascularizado 189. La 
visualización de células de tipo RGL en contacto con capilares 140 y grupos de células BrdU+ 189 
cercanos, sugirió el papel regulador de la microvasculatura en el proceso de neurogénesis 
adulta. De hecho, se ha comprobado que los factores solubles secretados por las células 
endoteliales tienen la capacidad de estimular la autorrenovación y la producción de neuronas 
219,220 . Estos factores, además, promueven la supervivencia de las nuevas neuronas en etapas 
posteriores del desarrollo a través de la señalización del factor VEGF-A (Vascular endothelial 
growth factor A) 221. Paralelamente, otros factores de crecimiento y neurotróficos con origen 
local o que alcanzan el nicho hipocampal a través de la vasculatura, como BDNF (Brain-derived 
neurotrophic factor), IGF-I (Insulin-like growth factor-1), FGF-2 (Fibroblast growth factor-2) 
favorecen la proliferación, la supervivencia neuronal 222,223 y el crecimiento dendrítico224 de 
las neuronas inmaduras. 

6. MODULADORES DEL PROCESO DE LA NEUROGÉNESIS HIPOCAMPAL ADULTA 

La neurogénesis hipocampal adulta es un proceso estrictamente regulado tanto por factores 
positivos como negativos. Entre los primeros, uno de los mejor caracterizados es el 
enriquecimiento ambiental 225,226. Significativamente, el enriquecimiento ambiental 
promueve la supervivencia e integración sináptica de las nuevas neuronas 227,228. Este 
paradigma incluye tres componentes: ejercicio físico, estimulación cognitiva y estimulación 
social. Dichos constituyentes han sido abordados, además, de forma individual, 
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encontrándose efectos beneficiosos sobre el proceso de neurogénesis a distintos niveles. El 
ejercicio físico voluntario aumenta de forma específica la proliferación de progenitores 
229,230 a través de cambios vasculares 227, que favorecen el acceso a factores tróficos como 
IGF-I 231. Por su parte, el enriquecimiento social, aumenta tanto la densidad como la 
maduración morfológica de las nuevas neuronas (DCX+) 232. Finalmente, la estimulación 
cognitiva o aprendizaje que requiere la intervención hipocampal incrementa la densidad de 
neuronas inmaduras 233 y favorece su supervivencia 102,234. Si bien los efectos beneficiosos 
del enriquecimiento ambiental y el ejercicio físico se observan incluso durante el 
envejecimiento 235,236, evidencias recientes señalan la existencia de un periodo crítico, 
durante el cual las nuevas neuronas granulares exhiben la mayor sensibilidad a los efectos 
de ambos paradigmas 237,238. De forma similar al enriquecimiento ambiental, la restricción 
calórica favorece la supervivencia de neuroblastos mediante la señalización mediada por 
BDNF 239. Asimismo, algunos fármacos, como ciertos antidepresivos, favorecen el proceso 
de neurogénesis adulta a través del aumento de proliferación de los progenitores 84,240,241. 
De hecho, la ocurrencia de dicho evento es necesaria para que los antidepresivos produzcan 
efectos terapéuticos 242,243.  

Por el contrario, el estrés agudo altera el perfil proteico del hipocampo afectando así, entre 
otros procesos, a vías implicadas en neurogénesis adulta e inflamación 244. En este sentido, 
el efecto adverso del estrés sobre el proceso de neurogénesis ha sido demostrado desde 
etapas perinatales hasta la edad adulta 41,245, incluyendo entre otros, el estrés generado por 
aislamiento social 246. Adicionalmente, las dietas ricas en grasas afectan negativamente a la 
etapa proliferativa del proceso de neurogénesis 247,248. De forma similar, la privación del 
sueño en fase REM (Rapid eye movement) de forma prolongada 249 reduce la proliferación 
celular 250,251, mientras que la supervivencia y la diferenciación neuronal disminuyen 252 
cuando se impiden las otras fases del sueño 249. Adicionalmente, los eventos convulsivos 
producen un aumento transitorio del proceso de neurogénesis. Sin embargo, ésta genera 
células con morfología, migración y conectividad aberrantes 253,254, que, además, 
contribuyen al agravamiento de las crisis epilépticas y al declive cognitivo 255. 
Seguidamente, la hiperactivación del giro dentado genera astrocitos reactivos, depleción del 
conjunto de células de tipo RGL 256 y disfunción microglial 257. En este sentido, la 
neuroinflamación reduce la supervivencia y la densidad de neuronas inmaduras mientras 
que aumenta el de células microgliales. Este efecto adverso sobre la neurogénesis puede ser 
revocado empleando fármacos antinflamatorios 258,259. Por otra parte, el envejecimiento 
fisiológico y patológico son dos de los moduladores negativos más potentes del proceso de 
neurogénesis hipocampal adulta. En el caso del primero, se ha observado un decremento de 
este proceso de forma paralela a la edad en modelos animales y en la especie humana 
62,173,260, al tiempo que prospera la gliogénesis 51,235. Asociado a la vejez, se observan 
problemas de aprendizaje y memoria dependiente de hipocampo 101 y una reducción de la 
densidad sináptica en neuronas granulares 261. 
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7. EL PARTICULAR CASO DEL ESTUDIO DEL PROCESO DE NEUROGENESIS EN LA 
ESPECIE HUMANA 

La neurogénesis hipocampal adulta en la especie humana fue demostrada por primera vez 
mediante inmunohistoquímica, a través de la observación de células que habían incluido la 
molécula sintética BrdU y que además expresaban NeuN en el hipocampo 49. Posteriormente, 
una amplia variedad de abordajes experimentales ha contribuido a la confirmación de la 
ocurrencia de dicho proceso en nuestra especie. Entre ellos, incorporación de IdU 50 o 14C 51 
en células proliferativas hipocampales, cultivos de progenitores in vitro 262, Wester- blot 64,65, 
qPCR 66 o RNAscope 67. A pesar de la sólida evidencia que apoyó su ocurrencia en seres 
humanos, en 2018 se generó un debate en el campo tras la publicación de un artículo que 
describió la ausencia de marcadores de neurogénesis en el hipocampo humano adulto. No 
obstante, algunos grupos 57,58 mostraron una aparente ausencia de marcadores de 
neurogénesis en el hipocampo humano adulto empleando la técnica de inmunohistoquímica, 
lo que cuestionó la existencia de este proceso en nuestra especie. En este sentido, distintos 
aspectos técnicos han sido sugeridos como responsables de dichas discrepancias 63,263,264. 
Estudios posteriores de nuestro grupo han investigado el impacto de las variaciones en la 
metodología empleada en el estudio del proceso de neurogénesis hipocampal adulta en la 
especie humana, y han contribuido sustancialmente a la demostración de la existencia de 
dicho proceso en nuestra especie 60–62. 

7.1. Una mirada crítica a la metodología 

El uso de muestras humanas post mortem conlleva la aparición de un lapso temporal entre 
el fallecimiento del sujeto hasta la inmersión de la muestra en fijador. Dicho parámetro se 
denomina intervalo post mortem y ha sido propuesto como una de las variables 
responsables de la discrepancia en la visualización de marcadores de neurogénesis entre 
estudios 263. Si bien se recomienda reducir al máximo este intervalo 265,266 con el fin de evitar 
la degradación proteica, distintos aspectos éticos y legales inevitablemente prolongan dicho 
lapso temporal. En este sentido, la repercusión del intervalo post mortem sobre la detección 
de diferentes proteínas es variable 266–268. En particular, la expresión de DCX, y otras 
proteínas asociadas a microtúbulos 269, muestra una especial sensibilidad de degradación 
asociada al intervalo post mortem en áreas dendríticas 265. No obstante, el número de células 
DCX+ y otros marcadores de neurogénesis adulta no muestra una correlación 
estadísticamente significativa con el intervalo post mortem hasta las 38h en muestras de la 
especie humana 60,62,95,270. La preservación del pH y de la calidad del ARN (ácido 
ribonucleico) de forma independiente al intervalo post mortem generado de forma natural 
hasta ~59.4 horas 271, o artificial hasta 48h 272, está en consonancia con la visualización de 
marcadores en nuestros estudios. Cabe mencionar que el pH y la calidad del ARN pueden 
modificarse de una manera más relevante por factores previos al fallecimiento del sujeto 272 
como el estrés o la inflamación 63,273.  
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Una vez sumergida la muestra en el fijador, la fijación con formaldehído incluye una fase de 
penetración rápida que detiene los procesos de autolisis, seguida de la formación de enlaces 
covalentes y enlaces cruzados 274 entre proteínas, glicoproteínas, ácidos nucleicos y 
polisacáridos 275. La formación incremental de estos enlaces debido a una exposición 
progresiva al fijador 276 podría comprometer la capacidad de visualización de ciertas 
proteínas de interés. En este sentido, tiempos de fijación prolongados (24-48h) en PFA al 
4%, impiden la visualización de neuronas inmaduras DCX+ y PSA-NCAM+, observables con 
tiempos de fijación menores 49,62. No obstante, otros marcadores neuronales como NeuN no 
se ven negativamente influidos por una fijación de 24h con el mismo fijador 49, sugiriendo 
la sensibilidad desigual de los marcadores empleados en la técnica de inmunohistoquímica 
al lapso temporal de exposición al fijador. En línea con estos resultados, el método de 
preservación empleado por la mayoría de los bancos de cerebros del mundo, es decir, la 
inmersión del tejido cerebral en formalina durante largos periodos de tiempo impide la 
detección de marcadores de neurogénesis adulta mediante inmunohistoquímica en 
muestras post mortem de tejido humano adulto 61,62 en tejido de neonatos 95. La modificación 
de los sitios de reconocimiento de las proteínas de interés por efecto del fijador 276,277 
provoca la incapacidad de unión específica de los anticuerpos. La aplicación de un protocolo 
de desenmascaramiento antigénico en tampón citrato y microondas revierte esta alteración 
en muestras fijadas en PFA al 4% durante 24-48h 61, posiblemente a través de la 
modificación de los enlaces cruzados generados por el fijador 278. Debido a que la formación 
de estos enlaces es incremental a lo largo del tiempo 276, el tiempo de aplicación de 
microondas y la temperatura podrían ser asimismo dependientes del intervalo de fijación 
de la muestra 278,279. La aplicación de parámetros inadecuados durante la recuperación de 
antígenos podría provocar la unión inespecífica de los anticuerpos 61,280, e incluso ocasionar 
la visualización de tinciones artefactuales en regiones no neurogénicas 281. Por su parte, el 
tejido cerebral humano está enriquecido en pigmentos lipídicos de lipofuscina 
autofluorescentes 282, especialmente abundante en el cerebro envejecido 283, que 
obstaculizan la visualización de señal específica mediante inmunohistoquímica. Además, la 
fijación con aldehídos incrementa la autofluorescencia del tejido 284. En este sentido, las 
estructuras con capacidad fluorescente denominadas bases de Shiff, se establecen como 
resultado de la interacción entre los aldehídos de las sustancias fijadoras y las aminas 
liberadas en los eventos de muerte celular 285. Debido a su capacidad para neutralizar las 
bases de Schiff a través de la reducción de los compuestos amino-aldehídos a sus sales no 
fluorescentes 285,286, la incubación con NaBH4 se ha aplicado exitosamente en el estudio de 
la neurogénesis adulta humana 59,61,62. Adicionalmente, el empleo de agentes eliminadores 
de autofluorescencia reducen la intensidad del fondo y de los gránulos de lipofuscina, 
permitiendo la observación de señal específica de marcadores de neurogénesis adulta en el 
giro dentado humano 61. No obstante, la aplicación del pre-tratamiento histológico 
(desenmascaramiento antigénico, agente eliminador de autofluorescencia e incubación con 
NaBH4) no consigue revertir el efecto de la fijación muy prolongada 62. Esta irreversibilidad 
podría ser debida al gran acúmulo de enlaces covalentes más estables, el estado 
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fisicoquímico del tejido 287 o la acidificación de la muestra 288 como efecto de la exposición 
progresiva a los aldehídos presentes en las sustancias fijadoras.  

Si bien durante el protocolo de inmunohistoquímica es necesario el empleo de detergentes, 
nuestros resultados sugieren que el uso de detergentes como Triton X-100 no es compatible 
con la observación de la señal de epítopos lábiles como Nestin, por inmunohistoquímica 60. 
Debido a su carácter no selectivo, este detergente interactúa tanto con lípidos como con 
proteínas, generando poros y/o eliminando dichas moléculas de la membrana, pudiendo 
generar falsos negativos en concentraciones elevadas 289. En oposición, la Saponina, más 
suave, interactúa selectivamente con el colesterol de membrana, formando poros 290 y 
permitiendo el paso de los anticuerpos a través de las membranas fijadas. Este mecanismo 
de acción salvaguarda la morfología celular y facilita la observación de células de tipo RGL 
Nestin+S100β- en el giro dentado humano 60.  

Una vez obtenida la señal obtenida mediante inmunohistoquímica, es crucial realizar una 
validación técnica y biológica de la misma 62. La visualización de células cuya localización, 
morfología y/o patrón de expresión no es similar a las descritas en roedores 13, podría 
sugerir un inadecuado funcionamiento del anticuerpo en tejido humano, y requiere 
particular atención y validación exhaustiva. En este sentido, se ha sugerido que la señal DCX+ 
observada en la corteza de primates no humanos podría corresponder a un falso positivo 
debido a la reactividad cruzada de anticuerpos y a la autofluorescencia 281. Por ello, es 
pertinente la realización de controles como la pre-adsorción de los anticuerpos con 
péptidos sintéticos específicos, para confirmar la especificidad del anticuerpo empleado 62.  

Una vez completado el proceso de la tinción inmunohistoquímica, la determinación de la 
densidad celular de cada marcador puede obtenerse mediante distintas aproximaciones 
técnicas 291. En primer lugar, la homogeneidad de la región anatómica muestreada es 
necesaria para permitir comparaciones entre estudios, especialmente en el caso de 
poblaciones heterogéneamente distribuidas. En este sentido, es posible reportar la 
densidad de cada subpoblación celular en una región concreta del hipocampo 60–62,95,270, o 
en la totalidad del giro dentado humano 59,292. Por otra parte, los contajes celulares 
estereológicos 293 pueden realizarse de forma manual 61,62 o mediante un software de 
detección celular especializado 59,292. Así, las variaciones en la zona evaluada, determinación 
del volumen de referencia y/o la técnica de microscopía o recuentos celulares empleada, 
podrían ser responsables de la obtención de resultados a priori desiguales.  

Finalmente, con el fin de obtener la mayor cantidad de información posible acerca de los 
sujetos objeto de estudio, es importante reportar los parámetros epidemiológicos de los 
mismos, entre ellos, edad, sexo, causa de fallecimiento, diagnóstico clínico, intervalo post 
mortem y evaluación neuropatológica (Braak-Tau, CERAD (Consortium to establish a 
registry for Alzheimer’s disease), TDP- 43, α-sinucleína, patología vascular…). Datos 
adicionales como el estilo de vida, nivel de actividad física, dieta, patrones de sueño, 
consumo de drogas, entre otros, han demostrado influir en la tasa de neurogénesis adulta 
en roedores 230,294, si bien esta información no se encuentra siempre disponible para todas 
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las muestras de origen humano. En este sentido, algunos autores han empleado muestras 
de biopsias o resecciones del lóbulo temporal para investigar el proceso de neurogénesis 
adulta 58,295. No obstante, los pacientes sometidos a este tipo de cirugías suelen padecer 
tumores cerebrales o crisis epilépticas cuyos efectos negativos sobre dicho proceso han sido 
demostrados en seres humanos 296.  

Así como la metodología aplicada en la técnica de inmunohistoquímica para el estudio de la 
neurogénesis hipocampal adulta en humanos ha sido validada en nuestros estudios 60–62 
otras técnicas utilizadas para evaluar este proceso también pueden verse influenciadas por 
la metodología empleada. En este sentido, ha sido demostrado que el uso de disociación 
enzimática del tejido cerebral humano para análisis de expresión de célula única puede 
inducir a un patrón de expresión génico aberrante 297. Además, parámetros como la calidad 
de la muestra, el tamaño de muestreo o la metodología durante el procesamiento y análisis 
95,298, se han señalado como posibles factores responsables de las discrepancias obtenidas 
en los resultados a nivel de expresión de célula/núcleo único en células hipocampales 
humanas 68,71,73,298. 

7.2. Desarrollo del proceso de neurogénesis hipocampal adulta en sujetos 
neurológica y neuropatológicamente controles 

Durante la etapa adulta, la población principal de células madre del giro dentado humano 
está constituida por células de tipo RGL que expresan Nestin 299, GFAP 59, Vimentin 60,300,301, 
y Sox2 302 de forma similar a lo descrito en roedores 137,138,146. Las células de tipo RGL 
fueron descritas por primera vez como astrocitos con capacidad para generar neuronas 
en el hipocampo de roedores 139, debido a que ambas poblaciones comparten ciertos 
rasgos morfológicos y electrofisiológicos 138. No obstante, posteriores estudios 
describieron las características diferenciales de las células de tipo RGL en base a 
morfología, posición y expresión de marcadores. Uno de los marcadores diferencialmente 
expresado es la proteína de astrocitos post-mitóticos S100β 196, ausente en las células de 
tipo RGL en roedores 137,138. De esta forma, nuestros resultados demuestran que las células 
tipo RGL humanas expresan Nestin y Vimentin pero son negativas para S100β 60,300,301. 
Estas células además exhiben procesos apicales largos y una localización preferencial en 
la zona subgranular 60, en línea con los rasgos descritos en roedores 137,139,140,147,303, y que 
difiere de la subpoblación de astrocitos Nestin+ S100β+ 60. La capacidad proliferativa de 
estas células ha sido respaldada por la observación de células proliferativas PH3+ 60 y Ki-
67+ 304 en el giro dentado humano in vivo e in vitro 262, y más recientemente mediante la 
demostración ex vivo de incorporación del análogo sintético de la timidina, EdU (5-
ethynyl-2’-deoxyuridine) en células del giro dentado de cultivos organotípicos obtenido de 
resecciones quirúrgicas hipocampales 73. Dichas células EdU+ expresaban además Prox1 o 
DCX, entre otros marcadores, poniendo de manifiesto la capacidad de generación de 
nuevas neuronas en dicha región cerebral de la especie humana. Estos datos están en 
consonancia con la observación de neuroblastos proliferativos HuC/HuD+ (Human 
neuronal proteins C and D) localizados en la capa subgranular 60, lo cual sugiere que su 
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identidad podría ser comparable a la de progenitores intermedios descritos en roedores 
13 así como de una subpoblación de neuronas inmaduras DCX+ PH3+ 62 en muestras post 
mortem de giro dentado humano. HuC/HuD+ es un marcador transitoriamente expresado 
por progenitores intermedios y neuroblastos proliferativos inmediatamente tras la 
división celular 305. 

Entre los marcadores mencionados, DCX, junto con PSA-NCAM, se establecen como los dos 
principales marcadores distintivos de neuronas inmaduras en el cerebro adulto 165,166,306. 
Si bien la expresión de ambas proteínas se ha considerado equiparable temporalmente en 
roedores 165,307,308, no es el caso en la especie humana 60. No obstante, ambos marcadores 
son detectables hasta los 100 años en el giro dentado humano 62,165. Además de DCX, 
recientemente se han propuesto otros candidatos como la proteína Stathmin-1, en base a 
su colocalización con los marcadores anteriores 71,73. Las células DCX+ observadas en el 
giro dentado humano exhiben un patrón morfológico y de expresión de marcadores 60–62,73 
característico de las distintas fases del proceso madurativo de forma análoga a lo descrito 
en roedores 13,46,172,306, apoyando la naturaleza dinámica del proceso de neurogénesis 
hipocampal adulta en nuestra especie. En oposición a la descripción de algunas células 
DCX+ corticales que expresan marcadores de astrocitos 309, las neuronas inmaduras DCX+ 
descritas en el giro dentado humano no muestran expresión de marcadores de glía, 
endotelio o interneuronas 60. Por el contrario, ~90% expresan Prox1 60,62, reflejando su 
identidad de neurona granular 164,310.  

El proceso de neurogénesis adulta concluye con la completa y adecuada incorporación de 
las nuevas neuronas granulares al circuito del giro dentado, aunque el lapso temporal de 
la maduración de dichas células es variable y puede verse modificado por diversos 
factores 311,312. En este sentido, se han descrito variaciones temporales y funcionales 
intrínsecas del proceso de neurogénesis hipocampal adulta entre las especies de ratón y 
rata 313. En primates no humanos, se ha reportado un alargamiento del periodo 
madurativo de las nuevas neuronas comparado con el descrito en roedores, y, por 
consiguiente, se ha sugerido que la duración de este proceso podría ser incluso mayor en 
la especie humana 314. Debido a las propiedades electrofisiológicas únicas de las neuronas 
inmaduras 169,176,315 y a las funciones en las que están implicadas, entre ellas, la flexibilidad 
cognitiva o resiliencia a procesos de estrés 111,123, la prolongación del estadio inmaduro 
del proceso de neurogénesis adulta podría otorgar una ventaja evolutiva sustancial a las 
especies con mayor esperanza de vida 314,316. 

7.2.1. El nicho neurogénico hipocampal en condiciones fisiológicas 

El proceso de neurogénesis hipocampal adulta se enmarca en un entorno único con 
capacidad para instruir y especificar el destino de los progenitores neurales 188,190 que 
integra principalmente astrocitos, células de microglía y vasos sanguíneos. Los astrocitos 
proporcionan apoyo metabólico, contribuyen a la función neuronal y favorecen el proceso 
de neurogénesis 199,317,318. En muestras humanas, estas células expresan S100β, GFAP, 
exhiben procesos radiales cortos y se localizan de forma homogénea en la capa granular, 



Anales de la Real Academia de Doctores de España. Volumen 10, número 3 – 2025, páginas 511-560 
Moreno-Jiménez, E.P. et al. – Proceso de neurogénesis hipocampal adulta en la especie humana… 

 
 
 
 

 

528 | Elena P. Moreno-Jiménez, María Llorens-Martín 
 

a diferencia de la subpoblación de células de tipo RGL Nestin+ S100β- 60,66. Las células de 
la microglía (Iba1+) participan activamente en la regulación de la neurogénesis adulta 212–

214 y en la homeostasis del nicho neurogénico eliminando desechos y células que no han 
logrado integrarse en el circuito 163,208. En línea con estos resultados, se observa una 
correlación entre el número de células de microglía con el de neuronas granulares totales 
e inmaduras en el giro dentado en controles 60. Además, estas células Iba1+ exhiben 
bolsillos fagocíticos 60, unas formaciones membranosas especializadas de los procesos 
microgliales cuya presencia se relaciona con su actividad fagocítica 60,163. Por otro lado, la 
vasculatura ocupa ~7% de la superficie de la capa granular humana 60 y proporciona el 
soporte trófico a las células implicadas en el proceso de neurogénesis adulta 189, 
encontrándose además en estrecho contacto con ellas 60. De hecho, nuestros resultados 
sugieren una correlación entre el área ocupasa por la vasculatura con células de tipo RGL 
Nestin+ y células proliferativas PH3+ 60 que podría estar en consonancia con la capacidad 
descrita de las células endoteliales para impulsar la autorrenovación de progenitores 
neurales 219. 

7.3. Proceso de neurogénesis hipocampal adulta y homeostasis del nicho 
neurogénico durante el envejecimiento fisiológico humano 

La neurogénesis hipocampal adulta recapitula ciertos aspectos del desarrollo embrionario 
168,319 aunque con una duración más prolongada 320. Este patrón de elongación temporal se 
acentúa con el avance de la edad en roedores 312,321,322, si bien el patrón de expresión de 
marcadores inmaduros se mantiene 323. De esta forma, la edad es un factor regulador crítico 
de la neurogénesis adulta. De hecho, la tasa de neurogénesis hipocampal adulta disminuye 
durante el envejecimiento 62,137,173,322, lo cual parece estar estrechamente relacionado con el 
deterioro cognitivo y la pérdida de la capacidad de separación de patrones a lo largo de la 
edad en roedores 101,236. A este respecto, factores que favorecen la neurogénesis adulta, 
mejoran la ejecución cognitiva en ratones envejecidos 235,236. No obstante, aunque en número 
reducido, las neuronas inmaduras del hipocampo envejecido suponen un gran potencial de 
plasticidad estructural, ya que pueden ser reclutadas rápidamente al circuito cuando son 
requeridas 312,321. Tanto el declive en neurogénesis adulta y su asociación cognitiva, como el 
retraso en el desarrollo del fenotipo neuronal maduro dependiente de la edad, son apreciables 
de forma análoga en primates 324–327. En seres humanos, la capacidad de proliferación y 
diferenciación in vitro de células madre neurales y su declive con la edad se han vinculado al 
rendimiento cognitivo 262.  

En muestras procedentes de seres humanos de avanzada edad, se ha descrito una reducción 
del número de células Nestin+ 299, Sox2+ 59 y Ki-67+ 57,295. No obstante, nuestro laboratorio y de 
otros grupos sugieren la preservación de la densidad de células de tipo RGL 60,66, células 
proliferativas o neuroblastos proliferativos 60,328. Por otra parte, la mayoría de los autores 
coinciden en un declive del número de nuevas neuronas a lo largo del envejecimiento en la 
especie humana 51, reflejado por una disminución de la densidad de neuronas inmaduras DCX+ 
60,62,66,165 y PSA-NCAM+ 59. Una de las hipótesis que podría subyacer a la disminución del 
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número de nuevas neuronas granulares en el cerebro envejecido es un declive en la capacidad 
proliferativa de las células de tipo RGL 66. Los estudios en roedores han investigado en 
profundidad esta hipótesis, obteniendo tres posibles modelos. El modelo de autorrenovación 
a largo plazo propone que la totalidad de las células de tipo RGL retornan al estado de 
quiescencia una vez se activan 141. Por otro lado, el modelo de células madre desechables 
propone que las células de tipo RGL no regresan al estadio quiescente y, tras varias divisiones 
sucesivas, adquieren rasgos de células astrocíticas, provocando finalmente la depleción 
progresiva de la población de progenitores neurales 137. Finalmente, se ha propuesto un 
modelo mixto, en el que ciertas células de tipo RGL vuelven al estado de quiescencia a través 
de la degradación del factor pro-activador Ascl1/Mash1 155. La proporción de células de tipo 
RGL que tornan al estado de reposo se incrementa con la edad, como un posible mecanismo 
de preservación de progenitores neurales 156. Paralelamente, las alteraciones del nicho 
neurogénico hipocampal envejecido, especialmente en células de la microglía 60 podrían estar 
vinculadas al descenso de la tasa de neurogénesis adulta a lo largo del envejecimiento 
fisiológico humano. Así mismo, recientes análisis de expresión génica a nivel de núcleo 
individual han descrito una heterogeneidad transcripcional de las células de la microglía 
presentes en macacos envejecidos en comparación con aquellas obtenidas de sujetos jóvenes. 
Estos resultados sugieren que dichas células podrían desempeñar funciones variadas a lo 
largo de la vida del individuo 71. En este sentido, en roedores ha sido ampliamente descrita la 
función de remodelación sináptica 163 por parte de la microglía, lo cual podría estar vinculado 
al deterioro cognitivo asociado al envejecimiento 329. Asimismo, es sabido que, en ratones, el 
envejecimiento induce eventos neuroinflamatorios causantes de la subsiguiente afección del 
proceso de neurogénesis 210,258,259. Así, se ha relacionado la acción de astrocitos activados en 
la regulación de la respuesta neuroinflamatoria 330,331. El incremento de activación de células 
astrocíticas en seres humanos envejecidos 66, podría, además, contribuir al declive de 
neurogénesis adulta descrito en nuestra especie a través del descenso de la proliferación de 
células de tipo RGL 332. Por otra parte, el envejecimiento se asocia a la hipoperfusión cerebral 
crónica, con una implicación crítica en función cognitiva 333. En este sentido, la reducción de 
la angiogénesis observada en el hipocampo humano durante el envejecimiento 59 podría 
provocar la pérdida de contacto de células de tipo RGL con células endoteliales 140, así como 
una disminución en el acceso a factores sanguíneos pro-neurogénicos 219,221,334, contribuyendo 
posiblemente a su declive. 

7.4. Neurogénesis hipocampal adulta durante el envejecimiento patológico humano 

7.4.1. Enfermedad de Alzheimer 

Las enfermedades neurodegenerativas engloban un amplio espectro de patologías con 
diversas manifestaciones neuropatológicas y clínicas que afectan al paciente de forma 
progresiva. Entre ellas, la enfermedad de Alzheimer, descrita por Alois Alzheimer como 
Dementia Praecox 335, es una enfermedad neurodegenerativa que cursa con pérdida de 
memoria progresiva y deterioro cognitivo y representa la forma más frecuente de demencia 
a partir de los 65 años en los países industrializados 336. Este psiquiatra describió las dos 
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principales marcas histopatológicas de la enfermedad: las placas extracelulares y ovillos 
neurofibrilares intracelulares. Posteriormente se identificaron la proteína β-amiloide, 
obtenida como resultado del procesamiento amiloidogénico de la proteína transmembrana 
APP (Amyloid-β precursor protein) 337,338, como el componente central de las placas 339, y la 
proteína de unión a microtúbulos, Tau, en su estado hiperfosforilado, como uno de los 
principales constituyentes de los ovillos neurofibrilares 340,341. Más tarde, la secuencia 
espaciotemporal de depósito de estas proteínas fue caracterizada al detalle, definiéndose 
los estadios de Braak-Tau 342,343 como un modelo aceptado de progresión de las alteraciones 
neuropatológicas. La enfermedad de Alzheimer afecta gravemente a la formación 
hipocampal 342. Los pacientes con enfermedad de Alzheimer cursan con alteraciones en 
memoria episódica 335,344, capacidad de separación de patrones 345, así como episodios de 
depresión 346. Algunas de estas alteraciones podrían ser compatibles con el deterioro del 
proceso de neurogénesis hipocampal adulta. Si bien algunos estudios iniciales reportaron 
un incremento de los marcadores de neuronas inmaduras como NeuroD1, PSA-NCAM, DCX 
347–349 y Calretinin 302, en contraposición, la mayor parte de los estudios posteriores, 
incluyendo los trabajos de nuestro grupo, demostraron que el proceso de neurogénesis 
hipocampal adulta se encuentra gravemente dañado en estos pacientes62,292,328,350,351. 
Concretamente se ha descrito una reducción en el número de células Sox2+ 328, células MAP-
2 (Microtubule- associated protein-2)-a+ y MAP-2b+ 350, neuronas inmaduras DCX+ 62, 
neuronas DCX+ Prox1+ Calbindin- 73, y neuroblastos DCX+ PCNA+ en pacientes con 
enfermedad de Alzheimer sin afectar a la densidad de neuronas granulares maduras 
(NeuN+) 62,347. Además, el descenso en el número neuronas inmaduras se correlaciona con 
los resultados en test cognitivos 292 pero no con la edad, lo que sugiere la presencia de 
mecanismos neuropatológicos independientes que podrían influir negativamente en el 
proceso de neurogénesis adulta 62, tal y como ha sido descrito en el modelo animal 3xTg 352. 
El origen distal de la vulnerabilidad selectiva de las nuevas neuronas puede tener diferentes 
orígenes, por ejemplo, perturbaciones relacionadas con cambios en el circuito, o mediante 
la acción de moléculas que llegan al nicho hipocampal a través de la vasculatura, entre otros 
mecanismos. En este sentido, en pacientes con enfermedad Alzheimer se ha descrito un 
aumento de neuroinflamación y astrogliosis 353, y una pérdida de contacto entre las células 
de tipo RGL y la vasculatura 299 en el nicho neurogénico hipocampal. Por otro lado, el 
hipocampo recibe proyecciones colinérgicas desde el cerebro basal anterior (septum 
medial, banda diagonal de Broca y núcleo basal de Meynert), una de las zonas mayormente 
afectada en la enfermedad de Alzheimer 354. De hecho, se ha vinculado la disminución de la 
actividad de progenitores neurales medido en base a la proteína Mushashi-1 a la menor 
expresión de la enzima presináptica choline-acetyltransferase en el giro dentado hipocampal 
de pacientes con esta patología 349, pudiendo influir en la autorrenovación y supervivencia 
de las células madre neurales 349,355. Asimismo, perturbaciones en la conectividad distal 
pueden repercutir en el adecuado desarrollo las nuevas neuronas. A este respecto, se ha 
descrito una atrofia característica de la corteza entorrinal 356 específicamente de neuronas 
de capa II 357,358 desde los primeros estadios de la enfermedad de Alzheimer. La ausencia de 
aferencias desde la corteza entorrinal podría impedir la correcta maduración del árbol 
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dendrítico de las neuronas inmaduras como ha sido demostrado en cultivos organotípicos 
hipocampales 359. De hecho, las nuevas neuronas detectadas en muestras procedentes de 
pacientes con enfermedad de Alzheimer exhiben alteraciones en los patrones de expresión 
de otros marcadores como PSA-NCAM, Prox1, β-III Tubulin, Calbindin, y NeuN 62, sugiriendo 
un bloqueo madurativo de las nuevas neuronas 350. En línea con estos resultados, se ha 
descrito una morfología aberrante en neuronas granulares en pacientes con enfermedad de 
Alzheimer360,361, sugiriendo alteraciones en su conectividad.  

En conjunto, las alteraciones en el proceso de neurogénesis adulta podrían impedir el correcto 
funcionamiento del circuito del giro dentado provocando las disfunciones en el estado del 
ánimo o la tarea de separación de patrones que pueden acontecer en pacientes durante la 
progresión de la enfermedad de Alzheimer345,346,362. De hecho, se ha propuesto que la tarea de 
separación de patrones podría emplearse como un biomarcador para discriminar entre 
pacientes con enfermedad de Alzheimer frente a aquellos con demencia 363. 

7.4.2. Neurogénesis hipocampal adulta en el contexto de otras enfermedades 
neurodegenerativas 

El estudio de la integridad del proceso de neurogénesis hipocampal adulta ha sido abordado 
especialmente en aquellas condiciones patológicas que afectan de una manera directa a la 
región hipocampal, como la enfermedad de Alzheimer. No obstante, otras enfermedades 
neurodegenerativas entre ellas, la esclerosis lateral amiotrófica 364, enfermedad de 
Huntington 365, α-sinucleinopatías 366,367 y demencia frontotemporal 368, se caracterizan por 
cursar con ciertas disfunciones de memoria, las cuales podrían asociarse a la pérdida de 
volumen hipocampal. 

Esclerosis lateral amiotrófica 

La esclerosis lateral amiotrófica369 tiene como característica principal la degeneración de 
las neuronas motoras superiores o inferiores en el cerebro y la médula espinal, resultando 
en una disfunción de los músculos somáticos. Esta patología fue descrita a partir de 
observaciones de músculos atróficos y la presencia de esclerosis en la región lateral de la 
médula espinal de tejidos post mortem 369. Si bien el 15-20% de los casos de variante familiar 
de la patología se asocia a mutaciones en SOD1 (Superoxide dismutase type 1) 370, la 
presencia de depósitos de TDP-43 (Transactive response DNA-binding protein 43 kDa) 
ubiquitin positivos se han propuesto como la principal marca histopatológica de la 
enfermedad 371, debido a su aparición en la variante esporádica 372 y en algunos casos en la 
variante familiar373. En modelos animales, se ha reportado una disminución de células de 
tipo RGL (Nestin+, GFAP+, y Vimentin+) en zona ventricular-subventricular 374. Por su parte, 
en pacientes con esta patología, se han descrito cambios en la subpoblación de progenitores 
neurales en ambos nichos neurogénicos 60,375, implicando posiblemente la señalización de 
la vía de Notch 376. Específicamente en el giro dentado se ha descrito un aumento de 
neuronas inmaduras con morfología aberrante y de células picnóticas 60 junto con 
alteraciones específicas en el nicho neurogénico hipocampal como astrogliosis 60,375. 
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Enfermedad de Huntington 

La enfermedad de Huntington es una patología neurodegenerativa autosómica dominante 
causada por la expansión del triplete C-A-G (citosina-adenina-guanina) en el gen de 
Huntingtina 377, que ocasiona el depósito intracelular de la proteína y la consiguiente muerte 
neuronal, esencialmente en el estriado y la corteza cerebral. Por este motivo, los pacientes 
pueden experimentar problemas motores, pérdida cognitiva y manifestaciones 
psiquiátricas 378. Estos pacientes también pueden mostrar déficits cognitivos relacionados 
con funciones hipocampales como memoria espacial 379. Las investigaciones en pacientes 
con enfermedad de Huntington señalan un incremento de células PCNA+ / β-III Tubulin+ en 
zona ventricular-subventricular 380. En la zona granular, se observa un incremento de 
células de tipo RGL y neuronas inmaduras 60, pero no una modificación de la subpoblación 
de células proliferativas 381. Tanto en pacientes como en modelos animales de esta 
enfermedad se observan alteraciones morfológicas en las neuronas inmaduras y cambios 
en el nicho neurogénico hipocampal 60,382. De hecho, en algunos modelos animales como 
R6/2, caracterizado por la expresión del exón 1 del gen de la Huntingtina humana con 115-
150 repeticiones C-A-G 383, se exhibe una reducción en el proceso de neurogénesis adulta 384 
y un deterioro en la tarea del laberinto acuático de Morris de forma precedente a la 
aparición de un fenotipo motor 385. 

Alfa-sinucleinopatías 

Las α-sinucleinopatías son un conjunto de enfermedades neurodegenerativas que 
comparten la acumulación aberrante de la proteína presináptica α-sinucleína 386,387, si bien 
difieren en la secuencia temporal de inicio de síntomas 388 .  

Entre ellas, la demencia con cuerpos de Lewy se caracterizada por la presencia de 
inclusiones celulares del mismo nombre, constituidas por la proteína α-sinucleína 389. Su 
sintomatología incluye disfunción motora, deterioro cognitivo e, incluso, alucinaciones 
visuales. La mutación A53T de α-sinucleína 390 induce la reducción de la tasa de 
neurogénesis en ambos nichos neurogénicos. Asimismo, causa alteraciones morfológicas en 
las nuevas neuronas granulares en modelos animales, lo que correlacionó con un declive del 
aprendizaje dependiente del hipocampo 391. En pacientes que padecen dicha patología, los 
estudios en la zona ventricular-subventricular mostraron un aumento de células 
proliferativas (PCNA+) y neuronas inmaduras (DCX+) 392. En la zona hipocampal, se observa 
disfunción del nicho y alteraciones morfológicas de las neuronas inmaduras 60.  

Por su parte, los síntomas motores de la enfermedad de Parkinson 393 incluyen lentitud de 
movimiento (bradicinesia), rigidez, temblor e inestabilidad postural consecuencia de la 
degeneración de neuronas dopaminérgicas de la Substantia nigra (ganglios basales), que 
proyectan al estriado por acumulación de la proteína α-sinucleína 394. En modelos animales 
de la enfermedad de Parkinson, el depósito de α-sinucleína reduce el proceso de 
neurogénesis, afectando específicamente a la generación de interneuronas dopaminérgicas 
glomerulares 395, junto con astrogliosis e inflamación en el bulbo olfatorio 396. Asimismo, la 
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sobreexpresión de la proteína α-sinucleína humana, reduce la tasa de neurogénesis, impide 
la supervivencia, la maduración morfológica y la integración de las nuevas neuronas en el 
hipocampo 397. En pacientes con dicha enfermedad, se ha descrito una disminución del 
número de células Nestin+ en ambos nichos neurogénicos 398, y, concretamente en el nicho 
neurogénico hipocampal, además, un incremento del número de células proliferativas junto 
con alteraciones morfológicas y de expresión de marcadores en neuronas inmaduras 60. 
Adicionalmente, se han reportado astrocitosis y disfunción microglial en el nicho 
hipocampal en pacientes con enfermedad de Parkinson 60. 

Demencia frontotemporal 

La demencia frontotemporal 399 agrupa un amplio espectro de demencias de aparición 
temprana que comparten un déficit progresivo del comportamiento, de la función ejecutiva 
o del lenguaje, determinando las tres variantes clínicas y, en último término, problemas 
cognitivos y déficits motores. Esta patología es conocida también como enfermedad de Pick, 
en honor a Arnold Pick, el psiquiatra que lo describió por primera vez 399. Se caracteriza por 
muerte neuronal, gliosis, cambios en la vasculatura y acumulación de las proteínas Tau, 
TDP-43, o FUS (Fused-in-sarcoma), estableciendo los subtipos neuropatológicos. Estas 
alteraciones se presentan especialmente en los lóbulos frontal y temporal 400. En el modelo 
animal knock-in TDP-43 se ha descrito una reducción del volumen del giro dentado junto 
con un descenso de la densidad de neuronas inmaduras DCX+ e interneuronas PV+ 401. No 
obstante, los modelos animales de demencia frontotemporal variante Tau, muestran 
afectación de las nuevas neuronas en lo que concierne a sus componentes de morfología y 
conectividad 402. Por otro lado, en pacientes con demencia frontotemporal variante TDP-43, 
se ha observado un aumento de células proliferativas (Ki-67+) y neuroblastos (PSA-NCAM+) 
en la zona ventricular-subventricular 403, mientras que una reducción en el número de 
células proliferativas y neuroblastos HuC/HuD+ 60 junto con alteraciones en la morfología 
ha sido detectado en pacientes con demencia frontotemporal 60. 

Las alteraciones descritas del proceso de neurogénesis hipocampal adulta podrían 
contribuir a los mecanismos responsables de las alteraciones en la función de separación de 
patrones 404 y de regulación del estado del ánimo 346,405,406 observadas en dichos pacientes. 
No obstante, a pesar de las alteraciones en dicho proceso, el giro dentado humano exhibe 
células de tipo RGL, células y neuroblastos proliferativos en pacientes con todas las 
enfermedades neurodegenerativas anteriormente mencionadas60,62. Debido al papel 
fundamental de la neurogénesis en el aprendizaje, memoria y regulación del estado del 
ánimo, la demostración de su existencia en la especie humana tanto en condiciones 
fisiológicas como patológicas, representa un potencial reservorio de plasticidad neural y 
permite una ventana de oportunidad a la búsqueda de biomarcadores tempranos y/o a 
intervenciones terapéuticas encaminadas a mejorar los déficits cognitivos y variaciones en 
el estado de ánimo que manifiestan algunas personas a lo largo de su vida. 
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